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GLOSSARY

The Tolerance Distributiorn

F(x)
£(x)
f(n)(x)

The Zxperimence

a0

.o

a doce level

a tolcrance distribution

£t (x)

the nth derivative of f

the mean of the tolerance distribution
the mode of F

the median of F

the standard deviation of F

the distance between the 20th and 80th
percentiles of F

f(xm), the maximum of f(x).

the ith dose lavel
the number of subjects tested at X,

the number of subjects tested at each x,

wher. “1e sample sizes are all equal

the common distance between dose levels:

d=x. - =X,
i+l 1

d/o
d/R

the 'middle" dose level (xiwxo+id,

180, 41,22 \na)

the number of dose levels on each side of
X for the finite experiment

the distance on each side of X, covered

by dose levels in the finite experiment:
a=kd



vii

N : the total number of subjects tested in
the finit~ experiment: N=n{2k+l)

3. Observations and Estimators

rs : the observed number of subjects responding
at the ith doss level, x,
P : the proportion of subjects responding
at the ith dose level: p, =r /n,
17171
X : the Spearman estimator

L. Information and Characteristics of Estimators

E( ) : denotes expectation when a random variable
appears in the brackets

v{ ) :  denotes variance
MSE ( ) :  denotes mean square error
B( ) : denotes bias
szbgif;pt : denotee finite experiment (doses x =x _+id,
i=0, %1, 22,....tk). If no subscript a or

k appears, the experiment is infinite
(doses x. =x +id, i=0, 21, 22,......). If
no conditioflal notation concerning x
appears, x_is taken %o be randomly 2hosen
on the int@rval (o,d).

E_( ) = expectation with rcspect to x_ over the

%o interval (0,d) °
subscript A denotes an asymptotic moment (see (6.3)
and (9.1))
1Y : the value %j,F(l-F)dXo ¥ is shown in

section ...3 to approximate V(X) and is
defined in section 6.3 to be the asymptotic
variance of X for the infinite experiment

I : information for scale parameter known

Ill : element in the inverse information matrix
corresponding to u when the scale parameter
is unknown

—

W ——— —

- _
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denotes efficiercy relative to
estimctor follows in brackets.
denotes efficiency conditional

denotec cfficiency relative to

I3if no
B(x )
on x°.
o
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1.1

INTRCODUCTION
An Example of a Quantal Assay:

In certain experimental situations it is impossible to
measure the variablse on each experimental unit directly, but
it is possible to fixl a number for each unit and then deterw
mine simply whether or not the exparimental unit has a measure-
ment greater than this number, This type of experimental situ-
ation i1s found in a variety of fields of biological investiga-
tion, The following example from hormone assay illustrates
the nature of the problem(13),

Some estrogenic preparations are extracts from the urine
of pregnant mares, These preparations are mixtures of several
estrogens, The estrogenic strength of such extracts can not
be measured analytically in a satisfactory way, It is known,
however, that if sufficient estrogenic substance is givan to
immature or spayed female mice, they will show cornification
of the vagina, If a fixed dose of the preparation 1s given
to a2 test animal and cornification is observed, all that 1s
known is that the dose administered was at least as great as

the 'tolerance! of the mouse to this preparation, If no

cornification is observed, there is no way of knowing how

[

lIn some applications this number can be fixed only with
appreciable error, This case is not considered in this paper,
but has been discussed by Haley (21) for certain parametric
formulations,
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1.3

much higher the dose would have had to be to induce the
response, It is desirable to estimate the mean tolerance
of a group of test animals to the preparation on the basis
of such data, The mean tolerance and the strength are in-
versely related, Other examples of this assay situation can
be found in insecticide research (7), vitamin research (20),
vaccine screening for safety (25), and toxicity evaluation
of various chemicals (27), The quantal assay situation can
also be found in industry in munitions testing (14) and
reliability testing (30) among other applications,
Terminoj.ogy

The variable under investigation will be called the dose.
The dose may be a direct measure of the stimilus (e,g. con-
centration of an injection) or it may be some transformation
of this direct measurement (commonly the log of the measure-
ment), The experimental units will be tested at various
doses, The observation on each unit will be either a response
or a no-response, All-or-none responses are called quantal
responses in biological experiments, The experiment is a
quantal assay. The probability of response depends on the

dose, The function relating the probability of response to

the dose level is the tolerance distribution or dose resporise

function,

The Experiment and Model

The usual quantal assay is done in the following manner.

A set of dose levels is chosen, The test subjects to be used

e e e G ipl



in the experiment are randomly allocated to the d ose levels.
The number of responses among the subjects in each dose level
group 1is used as the basis for inference.

The test animals shculd be randomly selected from a well-
defined population of subjects. The dose response function
is descriptive of this population. The stability of the dose
response function over time must be investigated (3).

The notation used in this paper will be as follows:

x denotes a dose level

F(x) denotes the dose response function, i.e. the

expected proportion of responses at dose x
x, denotes the ith dose level used in the experiment,

1=0, *1, #2,,..

n. denotes the number of subjects tested with dose Xy
denotes the number of subjects responding among the
r subjects receiving dose x,

P; denotes the proportion of subjects responding among

the group of subjccts receiving dose X, p,= Ty/ n,
The assumptions concerning the dose response function
and the observations are:
F(x) is a distributior: function
F(x) has a first moment, p, called the mean tolerance
The observations on the subjects are mutually independent

The observations are the dichotomous quantal response vari-

ables. & set of sufficient statistics for the experiment ousists



of the numbers of responses, Ty, among the subjects tested at
each dose level. The r, are mutually independently distributed
binomial variables with means niF(xi), i=0, £}, ¢,... .

The primary problem in this paper is the estimation of p
on the basis of the experiment described above. Some bio-
statistical writers (4, 5, 6, 8, 10, 15, 16, 17, 18) recommend
parametric estimators for this problem, i.e. estimators which
necessitate the specification of a functional form for the
dose response function. One function used frequeritly is the

normal tolerance distribution:
I'd x-
2 l
F(xX;p,0°) = —— \ v -8, a @)
e

PR

B
-l

This paper presents an evaluation of the Spearman estimator,
& nonparametric estimator o u,
2. THE SPEARMAN ESTIMATCR

2.1 Definition of the Spearman Estimator

The estimator to be discussed in this paper was des-
cribed by Spearman (28) in 1908. He gives credit for the
idea to the German psycho-physiologist, Muller., The esti-
mator was described again by Karber (23) in 1931 and is
occasionally referred to as the Spearman-Karber estimator.

Spearman defined the estimator for regularly spaced
dose levels, x

i
bers of subjectc tested at a finite number of dose levels,

-x0+id, i=0, %1, *2, ..., and equal num-

8&y n,=n for i=0, +1, 2, ,..2k. The estimator is




_ k-1 q
x = Z (xi + /2) (pi‘i?i - pi)'

X is analogous to a grouped mean for continuous data.
Spearman computed this estimator only when Py - 0
and P = i« Inpractice the following modification is used:
_ 4 k-1 d d .
X = p =700 + B (g /p) by gpy) + (p ) +/5) (5.1
Thus any estimate of probability, Pys below the lowest dose
level (x_) for which nif 0 is assigned to the point half a
dose interval below the lowest level; and the estimate of
probability, l-p,, above x 1is handled similarly.
Armitage and Allen (2) extended Spearman's definition
to unequally spaced dose levels, X, &
Rt (AR g (2.2)
This definition can be modified to allow for estimates of
probability below Xy and above X .
Irwin (22) and Finney (15, 16) discussed an experiment
in which subjects would be tested at an infinity of dose

levels, This experiment called for n, =n and x -x0+id,

i
1=0, 1, $2,s.4, with x and d chosen arbitrarily. (See
Appendix I for a discussion of the resulting infinite
sample space,)

if nifb for all i and x, are chosen so that x,-+= as

i
i—= and x}.——-)- as i—)== , then the estimator can be

defined as the limit of ¥ defined in (2.2) as k—p= ,

C mm—
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k=1l | X, +x
- 1 1+1]
k—d>e -k [ ( i+l i) )

The following experimental designs will be considered:
(a) xXg = x + id with n, =n for i = 0, $1, %2, ...tk
and n, = G for 1 = t(k+1), *(k+2),e0ee (b) x, =x +id
with n, =n for 1 = 0, £1, #2,,4.000es The first experi-

ment will be referred to as the finite experiment and the

second experiment will be referred to as the infinite exper-

iment,

Notey  The Spearman estimator for the finite experi-

ment (2.1) can be expressed in several ways:
k

= o3
Rexe T /pmdl Ry (2.4)
N g k 0
X=x + /2 +dZg, ~dl Py (2.5)
1 ~k
q =1- Py

The Mean and Variance of tae Spearman Estimator for the Finite

gzperiment

The exact mean and variance of the Spearman estimator

for the finite experiment and fixed x  are:

®lx) = (3 et Y, By )+ (e 48/,) (1, )
B % R 2 A M T T e A S DA

! where F, = F(x.) (2.6)
i i

v (i]x ) = QE g F.1-F.)
k o no o ivd (2.7)

As an illustration (Table 2.1), the bias and the variance of

the Spearman estimztor have been computed for a normal tol-

erance distributi~. “1,1). The experimental desim cuusists




2.3

of five dose levels, two standard deviation units apart,
with n subjects at each of the five levels, “he bias and
the variance of the estimator depend on thr .ocation of
the dose mesh relative to the mean of the .olerance dis-
tribution. Therefore the bias and variar.ce were computed
for several locations of the dose mesh. The location of
the dose mesh is indicated by the distance of the middle
dose, X, from the mean of the tolerance distribution, g,

in standard deviation units,

When the mean is within the interval spanned by the dose

Jevels, the fluctuations in the bias and the variance as
functions of the location of the dose mesh are negligible,
When the dose mesh fails to cover the mean the bias becomes
large and the variance goes to zero. The mean square errors
for the case of n equal to ten and to one hundred are also
shown in Table 2.1,

Comparison of the Spearman Estimator with Parametric

Competitors

It is clear from the above introduction to the Spearman
estimator that it has certain advantages over its parametric
competitors:

a) The Spearman estimator is simple in concept, being just
the mean of a histogram reconstructed from the quantal
data,

b) The Spearman estimator is simple to compute, It involves

only the sum of the observed proportions (2.)). The



Table 2.1

The Piss, ¥ariance and Mran Square Error of the Spearman Estimator
(2.1) of the Mean of a liormal Tolerance Distribution, Using Five
Dose Levels Spaced 20 Apart

X5 Bias v (X jx,) nMSEk(i IxO)/02
° o az n=10 n=100
0] 0 1.178 1.178 1.178
2 -.003 1.168 1.168 1.169
ol -.004 1.14k 1.144 1.1h46
.6 -,005 1.114 1.11h 1.117
.8 -.003 1.089 1.089 1.090
1.0 0 1.078 1.078 1.078
1.2 .003 1.089 1.089 1.090
1.h .005 1.114 1.114 1.117
1.6 .005% 1.1k 1.1hh 1.1h7
" 1.8 .003 1.168 1.168 1.169
2.0 0 1.178 1.178 1.178
2.2 -.003 1,168 1.168 1.169
2.4 -.00L 1,143 1.143 1.1h5
2.6 -.00k 1,112 1.112 1.11k
2.8 -.001 1,086 1.086 1,086
3.0 .003 1,073 1.073 1.07k
3.2 .008 1.078 1.079 1.084
34 .01l 1.095 1.097 1.115
3.6 .021 1,112 1.116 1.156
3.8 .031 1.114 1.124 1.210
4.0 .0Lé 1.089 1.110 1.301
L.2 069 1.030 1.078 1,506
L. 106 <936 1,048 2.060
L.6 .158 .815 1.065 3.311
L.8 .229 678 1.202 5.922
5.0 320 .539 1,563 10.779
5.2 JAi32 1410 2.276
5.k .563 299 3.L69
5.6 . 710 .208 5.2L9
5.8 872 13y 7.743
6.0 1.045 .089 11.030
6.2 1,228 .055
6.4 1.L16 .032
6.6 1.609 .019

- e — i T e - L s -



parametric estimation procedures ordinarily involve
either an iterative solution or a weighted regreseion
solution.

c) The exact mean and variance of the Spearman estimator
are easily obtained for any size sample., Therefore
experimental design investigations are readily done,
In contrast, only asymptotic theory is avallable for
the parametric estimators,

d) The Spearman estimator is nonparametric in that no
functional form need be assigned F(x) in order to com=
pute the value of the estimate from the data., How
important this point is depends on the robustness of
the parametric estimators., Some relevant results are
presented later in this paper (section 9).

2.4 Examples of Tolerance Distributions

The tolerance distributions in Table 2.2 serve as illu-
strations throughout this paper. The first four distribu-
tions are used in praectice, The remaining
distributions are to illustrate specific points (see
sections L2, Le3, SJbi, 7.3, and 7.6).

3. THE INFINITE EXPERZMZNT: THE MEAN AND VARIANCE OF THE SPEAR-
MAN ESTIMATOR

3.1 The Infinite Experiment

Irwin's (22) and Finney's (15, 16) concept of an iufinite
experiment (section 2.1) makes possible a mathematical dis-

cussion of the effict of the location of the dose mesh on
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Normal

Logistic

Uniform

Algedbraic

Student's

10

Table 2.2

Tolerance Distributions

FUNCTIONAL FORM VARIANCE
2

Jl__ f Blx-n) t7/2 44, .parcoo _:|_=é
ox o 6

2

[ 1 4e-Plx-B)) -1, - 00<X<D -%é
3p
2

s10°(B(x-1) +x/b]; -/ U<B(x~p)<n/b -8

168°
-x/ o
; 0 )
pxu)e Yo 5 Mag(za g Mo A
| 129
1-x"" ; 1, ©1 s
(8-2) (s-2)2
(xes) ‘
Ke f H ~m<x<on,e>0 e+l
-00 at -

2 »

Note 1: For the algebraic distribution the mean is s-1 .
For the other distributions the mean is u.

Note 2:

For the first five distributions B must be positive and

the variance exists for all B.

For the last two

distributions the variance exists only if s8>2 and e%

respectively.,
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the bias and the variance of the estimator without discussing
the possibilities of grossly misplacing the whole set of dose
levels relative to g « The concept of the infinite experi=-
ment also facilitates the development of large sample defini-
tions of mean square error and efficiency in later sections

(6 and 7). The investigation of the infinite experiment

has practical impo:tance since it is shown in Appendix I

that the information for the infinite experiment is essential~
ly the same as that “or the corresponding finite experiment
covering “most" of the range of F(x).

32 Mean and Variance of the Spearman Estimator for the Infinite

eriment
Lemmas 3.2.1, 3.2.2, and 3.2.3 establish conditions
under which the Spearman estimator has the following mean

and variance:

B(R|xy) = 2(x+7/p) (Fy g F;) (3.1)
- @ =
V(E|xy)) = &= IF, (1-F,) (342)

Using (2.5), the estimator iss

%= L {x+Y/pr Lq -d2 ) (3.3)

k —e

Similarly
z(xi*d/é)(Fi+1“Fi> = x +dz(1 -F )-sz (3.4)

Llerma 3,2.1: If F has a first momert, p, then the series

-t

© 0
d A -
x5t /2+d§(l-Fi)-dZE’i (3.5)

converges to a finite value,



12

- o
Proof: The lemma is established if dZ(l—Fi) and dXFi
1 -t
are shown to converge to finite values. Consider the
remainder for dZ(l—Fi) :
1

qz (1-F, ) < S (1-F )dx

k+l
*
Interchanging the order of integration on the right:

a2z (-F) S tar
k+1( Y j )
*x

If F has a first moment, the integral on the right goes to

zero as X becomes infinite, Therefore dZ‘.(l—Fi) is finite.
o 1

Similarly dZI!‘i can be shown to be finite., Q.E.D.
Lemma 3,2.23 If.;‘ has a first moment, then the series
%, (1F,) (3.6)
n_i i
converges.

Proof: In the proof of Lemma 3.,2.1 it was established that
adodhdutes

<
Z(l—Fi) is finite, Since O < F.(1~F,) = 1-F, the series
1 i i i

-l

- 0
ZFi(l-Fi) also is finite, Similarly Z:Fi(l-Fi) is finite,
1

2w
and, therefore, d_ IF. (1~F,) is finite. Q.E.,D,
n i i
-th

Ismma 3.2.3: If F has a first moment, the Spearman estimator (3.3)

for the infinite experiment converges with probability one

to a random variable with mean and variance given by (3,1)

and (3.2).

Proof: Lemmas 3.2.,1 and 3.C.2 prove the convergence of the

series in (3.5) and (3,6). Theorem 2,3 in chapter III of

T
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Doob {(12) establishes the sufficiency of the convergence

of these two series for the convergence of X with probabil-
ity one, and shows that the expected value and variance of

X are given respectively by (3.5) and (3.6), or, using (3.4), °
by (3.1) and (3.2). Q.E.D.

The variance of the Spearman estimator is not zero even
though the number of observations is infinite, Similarly,
it is shown in Appendix I that the information contained in
the infinite experiment is finite in the common parametric
formulations,

EFFECT OF DOSE MESH LOCATION ON BIAS AND VARIANCE OF THE
SPEARMAN ESTIMATOR IN THE INFINITE EXPERIMENT

1 Qeneral Discussion

In the infinite experiment the expected value and vari-
ance of the estimator depend, in general, on the doses,
xi-x°+id, i=0,21,+2,..0¢s For a particular spacing, d, the
expected value and variance will be simply functions of X,
with period d.

Finney (15,16) has computed the bias and variance for
normal and logistic tolerance distributions., Since the Spear-
man estimator is nonparametric, it is desirable to have infor-
mation on the bias over a wide class of distribution functions.
It is possible to find bounds for the bias, distributions that
maximize the bias, and conditions on F(x) that limit the bias.
Bounds for the fluctuation in the variance can also be obtained.

<2 Bounds on the Bias of the Spearman Estimator




L

L4.2,1 Expregsion for the Bias

The bias of an estimator is the difference between its
expected value and the parameter estimated. Denote the
bias for the Spearman estimator for the infinite
experiment, conditional on x_, by B(ilxo). Using (3.1):

B(i‘xo) = E(iixo)-u 3
=_§(xi*d/2)(Fi+1‘Fi)' S xdF (x)

Xj+1

. Z(xi+d/2)(Fi+1-Fi)-§§ xdF (x)
Lead -l x.
i
= Z(Xi+d/2- ci) (Fi+l-Fi) (4.1)
- S X141
3 xdF (x)
where c = i e (Le2)
* §Xi+l
J dF(x)
i

he2.2. Bound on the Bias

From (L.l) it follows thatb:
Lemms 4.2.2

IB(xix,)| ff'txi*d/z‘ s |(Fy g Fy)t g’_ﬁ(Fid'Fi)‘% (L.3)

h.2.3. Tolerance Distributions .>r which the Dound is Attained

The bound given in (..3) is attained, e.g. the one

point distribution. In this case when one of the dose levels

coincides with the mass point of the distribution, the true

mean of the distribution equals the dose level, but the esti-

mator has an expected value d/é units below this dose level

(at the midpoint of the dose interval chowing the probability

increment). This example in.icates that for any distribution
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function, if d is large relative to the dispersion of F(x),
the bias can be approximately d/zq

Even if one excludes the one point distribution a bias
of d/é is attainable, Consider the class of discrete dis-
tributions with mass points on a lattice with spacing D.
Then if the dose mesh has d=D/m, m a positive integer, and
if the dose mesh is located so that the mass points coincide

with dose levels, then each c; (4L«2) has the value x, and

t4 8

- d d
B(x‘xo) ] (Fi+l-Fi) ]

!

Le2.4. Bound on the Bias for Unimodal Distributions

The situations discussed in paragraph L.2.3 do not occur
often in practice., In this paragraph F(x) is restricted to
functions with the usual properties possessed by tolerance

distributions,

Lemma L.2.4. If F(x) has a unimodal density with maximum ordinate,

then
3
m 2

plx,)| € &1 (k)

f

m

(Unimodality means the densZ. , f(x), is non-decreasing for

X less than the mode, xm, anc non-increasing for x greater

than the mode.)

Proof: The bound can be obtained by examining the terms in

the expression for the bias (L.1l),
Let Ii'(xi’xi+l) be an interval located above the modal

value X , so that f(x) is non-increasing in I,. Then, using

¢, 86 defined in (k.2),

- e - —
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ci_ﬁ xi+d/> no matter what the density f(x) is in L.

For the given probability Fi+1-Fi associated with Ii

the minimum value possible for c¢, is attained for the

i
density, g:
< <
g(x) fi X, * x 3 x,+Rd
g(x) = f1+l xi+Rd< X<X,

R is determined by:

Xia
g(x)dx = Fi gy s

Xy

i.e. Rd(f f df = F "F '

1) i+l i+l "1

For the minimizing density, g(x), the value of cj_becomes:

R\ oo
G0 RERCE AR ECHALANG

c
ig R
Fi+l Fi

Since c, for tLe density f(x) is bounded below by cig and

above by xi+d/2 » the bias term for I, satisfies

0% (x+Ypm e )(Fy,0-7) € (s Ym0y VFL )

is177 1 i+1 1

The term on the right can be evaluated in terms of d, R,

and the values of f(x) to o?tain:

. 2
X+ fpm o) (Fy gy

) £ 5 R(1-R)(£,-1, ;)

Since 0 = R § 1, this inequality can be relaxed to obtain:
2

0% (x+%p )Py F) 5% (8-, (L.6)




Similarly, for intervals below the mode, the following
inequality is obtained:

4° .4/
=g (f071) 3 (x) g4 2 ) (R o708 O (4.7)

Also, for the interval containing the mode, say (x o’xl)’

the inequality obtained is:

a2 d 42
- g (1) 8 (x, ¢ /e'co)(Fl'Fo) s g (f-1y) (4.8)
Then (4.6), (4.7), and (4.8) combine to give a bound on the

sum cf the contributions to the bias from all of the intervals:

[ a2 ( \ ® 2
£f-f.)«+& 4
T w1 Y g (f-1y,)
. (4.9)
lB(x[xo)I $ max {

2 0 2
a a

B (fm'fo) tf‘n 8 (fiol'fi)

o0 ) 0
Then, since :i: (fi-:t‘iﬂ)-fl and -Zc‘;o(fi*l-fi)-fo, the bound is

- d_e
IB(x|x )| g~ 1,
Q. E. D,

4,2.5, Unimodal Tolerance Distri butions for Which the Bound is

Avtained

The bound (4.4) is attained for certain unimodel densities.
Coneider the following example: Let £(x)=l1 for O%x#l, £(x)=0
otherwise. Ilet the dose interval, d, be given dby:

1

d =
N +1/2

(N a positive integer)

Let xo-O. The the dose levels will be given by:
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-1 0 1 N N+l

¢ py ’ 1 ) ot ’ i
N+ /2 N+ /2 R /2 N+ /2 N+ /2

e 9 e 9 et

for all intervals except tlie one containing the point, x=1,
f£(x) is uniform and cixxi+d/2 so that the contributions to
the bias are zero. For the interval containing x=1, i.e.
the interval

N N+1

(—T—>» —1—
N+ /2 N+ /2

,

the contribution to the bias can be computed as follows:

N 1 i+l N N+l/b
c,= + = - ) =
N .4 1 1 1
N+T/, 2 N+ [o N/, M/,
d
X /2-1
1
F, .-F 2 e
NL1'W 2(n+l/2)
‘ N+1/h 1 1 1
B(x|x )= -1 = -
° N+l/2 2\;.+1/2) (N+1/2)? 8

This is the bound given in (u4.l4) since d= = i/ and fm=1.
N+
2

The uniform distribution has the properties of symmetyy
and only two points of intlection. Therefore, these pro-
perties do not lead to a stronger bound on the bias of the
Spearman estimator.

Lie2.6. Bounds on the Bias for Distributions in Tercs of

Derivatives
The example of tne uniform distribution in paragraph L.2.5

suggests the contributions to the bias of tha Spearman esti-

e~ - -~ - - - o e = e ANl g =
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mator come from discontiniities and rapid rates of change
in the density function. 3ounds on the bias can be tight-
ened with bounds on f'(x) or higher derivatives.

Lemma 4.2.6 If F(x) is differentiable s times, F(x) is symmetri-

cal, and f(n)(x) has limit zero for x-¥»+= and for x=> -,
n=0,1,2,...5, then

‘B(i’xo)‘s— suy ‘Pnﬂ(x)'dml& t f(n)(x)'dx (Le10)
x

n*0,1,2,...8
f(n) (x) is tie nth derivative of f(x)
(See Appendix II for definition of Pn(x)--the nth Bernoulli

function).
Proof: let ik be the Spearman estimator for a finite number

of dose levels, x =x +id, 1=0,%1,%2, ...,*k. From (2.5):
N k 1
Hemxgmd 2(py- /)
, k 1
E(xk‘xo)zxo-d-g (F(x +id)="/,)
Then by the Euler-MacLaurin formula (see Appendix II):

k
E(ik‘xo)=xo-d g (F(xo+xd)-1/2)dx

+1/2 (F(xo+kd)~1/2) + % (F(xo-kd)-l/é)

) & Pl(x)f(xo+xd)dx (Le11)
‘x
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From (2,6) and ( .1) it is seen that E(X|x )= lim E(ik|x ) .
[e] K b (o]

First consider tte limit of the middle two terms within the

brackets, 1.e.,
L Fp(x +kd)-1+F(x_kd)
2 fo) o) *

Since F is a distribution functiocn, the limit of this expression
as k becomes large is zero.

The first integral in (L.11l) can be rewritten:
prkd+(x _=i)

(k
3 [I“(XO*"Xd)"l/z] dx = % [F(Y)‘l/z]d}'
~k wekd+{x _~u)
u+ I'd-(’c -u)) wrkd+(x _-p)
-2 & P(y)- 1/ R [F(y)-l/ dy
d 2 2
el o) Wkas (o)
‘ prkd+(x -u)
.2 F(y) /
3 2
)

pkd=(x -u)

(Since F(y) is assumed symmeric, F(y) =% will be an odd
function with respect to y=p.) Consider the limit of this
integral as k becctues large. The length of the interval of
integration remains consta:t, The value of the integrand
approaches % + Hence,

wrkd+ (x =)
1 1 , xo-p.
lim 3 [F(Y)- /2] dy =

kK —rw

prkd=(x =)

- -—- N - LY - —— 7 ~ - " - . o e —
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Substituting the limiting values obtained thus far in (4.11),

the expression for E(i[xo) becomes::
k
- - . 2
E(x{x )= lim E(X |x )=u+ 1lim d S P, (x)f(x +xd)dx
‘ 0" K de **x %o K~ @ ) 1 0

Thus the bias can be bounded as follows:
|BGbx,)| € sup | 200 fa | |t fax
o] % 1

Before tasking limits the integral involving P, and f could

1
be integrated by parts, making use of the relationship:
' n-1
Py (x) = (-1)" P (x)

Repeated integration by parts would lead to the general
expression of (L.10). Q.E.D.

l4e247. Expressions for the Bound Involving Derivatives of the

Tolerance Distr_bution

When the bound (L.10) is evaluated for n=0 and n=1, the

results are respectively:

Bl £,

2
Bl €& s

m
The first bound is identical with the one obtained in
paragraph 4.2.2, without tle assumption of symmetry. The
second bound is of the same 2:der in d as that obtained in

paragraph L.2.L but the conc*ant $/6 is greater than l/8.
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Lerme U4.2.6 urovides a sequence of bounds on the bias
in increasing powers of d. For example, if n is taken to

be 2, the expression for the bound becomes:

|(| ){ sin k 2T x 3 X“'
B(x|x }= |sup| Z t d fi(x)] ax
° x |1 2°m3 3 » |
From Appendix II:
= sin k2fl x
sup | 2 2?-‘—'3 3 = 40080, « &
x {1 "

A simple expression for the integral can be obtained if the
density f(x) is assumed to have exactly two points of inflec-
tion, x=ptc, with the absolute value of the derivative of

t
f(x) at these two points being f, . Then

) u=-c p+c *
‘f"(x)‘dx =\ fM(x)dx - | fM(x)dx + | £(x)dx
— -3 H=C u+c
= Lf
keg

Thus the bound for the bias, w.sing n=2, becomes:
- s 3 [}
B(klxo) 00324 fc (Le12)

For a symnetrical density function with two
points of inflection, maximum slope fé and maximum
ordinate f ¢

m

<
fm: fé

Thus, for this class of densities, the bounds given in (L.lL)

F D ULV A S P
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and (4.12) can be combined to g.
Theorem 4.2.7

|B(|x,) | smtn. (.125a%/2) , .0320%¢)) (4.120)

%.2.8 Computation of the Bounds on the Bias for Some Tolerance

Distributions

If 4 18 expressed ir units of the standard deviation or
scme interpercertile difference of the tolerance distribution,
the magnitudes of the various bounds on the bias obtained
above can be more readily compared. Bound (4.3) becomes:

[B(x|x,)|5 § o (p=g)

Thus to assure that the bias is less than, say, 10 percent
of the standard deviation of the tolerence distribution,
d should be less than 20 percent of o, '

If the bound (4.4) is to be used, the modad ordinate
must be specified. In Table 4.1 bounds on the bias, computed from
(4.4), are given both in terms of o and R, R is the distance
from the 20th to the 80th percentile. The bounds on the bias
in terms of ¢ and R for the various distributions are quite
similar. For the four distridutions, other than the special
one~-particle function, a choice of 351,30 will assure a bias
of less than 10 percent of o,

The bound given in (4.12) can be applied to the first

three of the tolerance distributions listed in Table 4.1,

il e —— =~
.

" - B ——
N ——— - ———
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Table 4.2 gives the bounds for the three tolerance distri-
butions in terms of both o and R. Note from Table L.2 that
it 452,89 the bias of the Spearman estimator will be less
than 10 percent of o (using L.12).

Le3 Effect of Dose Mesh Location on the Variance of the Spearman

Estimator

L.3.1. Bound on |V(X{x,)-V|

Let x o

does not uniquely cdetermine x So). Then F(t) ( l—F(t)) is

be the median of F(x) (or a median if F(x)=%

and is non-increasing for xzfx g

non=-decreasing for xSx 5 0°

«50
Number the d ose intervals so that x s-x < xl Then
0 ".50

X
F(t) (l-F(t)) at = ar, (I-Fi) 120,=1,-2, ...
*j-1
X4
F(t) (l—F(t)) at < dFi(l-Fi> i=1,2, 000
X5
X
F(t) (1-F(t)) dt < d%%'%
xo

Combining these inequalities:

dz F(xi) [ —F(xi)} *d/h 2 S. F(t){l-F(t)} dt

o

C - e R e - - —_— - e -

" - -
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Table L.1
Bounds for the Bias of the Spearman Estimator

for the Infinite Experiment -J-“/

1
Tolerance Bound for the Bias -/
174 3
Distribution as a Proportion of o as a Proportion of R
2/ 3y
Logistic .0567 e 2y .0866€ '2 R
2 12
Normal .Oh99() o .0839 f) R
2 12
Angular .0h27 () o .OBOh\J R
Uniform .0361 () 2y .O?SO()'2 R
2 12
One-Particle .1250 G < .1732f) R
1/

. . < &
using (L.4) for the bound, ‘B(x'xo)' g £

2/

~ g is the standard deviation of the tolerance distribution

and d:() o

th

Y R is the distance between the 20°" and the 80" percentile

and d*E' R.
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Table 4.2

Bounds for the Bias of the Spearman Estimator for the

Infinite Experiment Y

Tolerance Bound on the Bias l/
Distribution As a Proportion of ¢ 2/ As a Proportion of R 2/
Logistic .0101 (;30 2/ .0568 r'3 r Y
3 '3
Normal 0077 p~o .0529 P R
3 '3
Angular .0075 F o .0639 ? R

l/using (4.12) for the bourd, |B(X lxo)‘ s -O32d3f&
g/o is the standard deviation of the tolerance distribution
and thc

h

é/R is the distance between the 20" and 80th percentile and

d=p .

Note: Finney (15, 16) gives the actual maximum bias for the normal
and logistic distributions for various values of d.For-fy,of
2. B=.0050 for the normal distribution while the table
gives .0620 as the bound; at e=3 Finney has B=.107 compared

with a bound of .208c in the table.
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Therefore the variance (3.2) satisfies the inequality:

2 = - © ] 2
V(i}xb) = %— 2 F(xi){jl-F(xi)j 2 % X F(t)[l—F(t)Jdt- %;

Similarly an upper bound for the variance of the estimator

can be obtained:

. 2
V(x|x,) §% X F(t)[l—F(t)J dt%;
Iet T be defined as:
7 = % 3 F(t){l-F(t)] dt (La13)
Then
2
| V(& x)-7| < 5= (Lo1k)

L.3.2. A Tolerance Distribution for Which ‘V(i[xo)-Vl Approximates

the Bound Arbitrarily Clcsely

(k.1%) _
The bound.on the deviation of V(x{xo) from ¥ is the

suprerun, Consider the two point distribution with masses

of %+ at the points O and 1. Then F(x) has the form:

F(x) =0 x<0
Fx) =%/, 0 < x<a1
F(x) =1 1§ x

Then

= 2
vag g F(%) {l-F(t)]dt-—-%H ’?5 % )

0

If d=l-e, 1> e~ 0, then it is possible for two doses to lie

between O and 1. In this case,



2 2
van - £ 34 1 - £
2 2
V(E|x,)-F1= for2fed
2
V(| x,)-T = & (2)

Therefore, as e goes to zero the deviation of V(i‘xo) from
2

¥ can be arbitrarily close to + %H .

Also, using the same example, but choosing 4 = l+e,
- d, 1
V(X‘XO)-V —Er—l T"‘—é

if no dose levels lie between O and 1, so that the deviation
2
can be arbitrarily close to - %H .

.3.3. Bounds on 'V(E

xo)-V! in Terms of Dérivatives

The Euler-Maclaurin f>rimudae yield better bounds on the
fluctuation of V(i}xo) due to the placement of X, when more
stringent conditions are irposed on F(x). If F(x) has a
continuous density (and the first moment of F exists, as has

already been assumed) then (see Appendix II):

2" 42 =
2 F(x_+id) [1~F(xo+id)]= < F(xo«d)[l-F(xoad)] dx
_&

Py (x)1(x gxd) {l-ZF(xond)} dx
n

-0

or

5 (®
iv(i;xo)-vtitg—j Pl(x)f(xo«rxd){1—2F(xo+xd)}dxi (L.,15)

]
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Integrating by parts in (4.15), which is justified if F' is
continuous and if the resulting integral exists:

(e
‘V(J’El‘xo)-V'S‘%— sz(x) g—if(x°+xd)(l-2F(xo+xd)) dx‘

il

First assume that F(1-F) has exactly two points of in-
flection, say at x=c, and at X=C, e Then the integrand is
positive for x ¢ 4 ard for x ) <5 and negative for x between

ey and c2. Then
3 _
iV(i{xC)-—Vlﬁ %—n{f(cl) 1~2F(cl)]-f(c2) [1—2F(c2)]

If F is symmetrical, then:
_ ¢ & -
tV(x‘xo)—V' * 2 i‘(cl) l~2F(cl)]

Also
23
KGERES Ry (L.16)

=
3n " m

L.3.L4 Computation of Bounds on iV(iﬂxo)-ﬂ for Some Tolerance

Distributions

To illustrate the magnitude of the bounds on ‘V(ilxo)-(ﬂ
express d in units of the standard deviation or an inter-
percentile deviation of F{x) and express 'V(i’c‘xo)—ﬁas a

proportion of ¥. Thus, using (L.1kL) and (L.16) %

‘V(ilxo)-ﬂ _ d/h
- L.1ka)
v K F(x)[l-F(x)]dx —
KGEREA ) &’y
XiIX )= -
1% -3 n (L.16a)
7
& F(x)[l—F(x)}dx

-3
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See Table L.,3 for numerical examples, From the second colum,

if d is less than .Lo then 'V(i|xo)-V‘<

% 20 percent for each
v

of the five tolerance distributions. The fourth column indi-
cates that for the logistic, normal and angular distributions,

oy (7Gx )=
a d less than .80 assures that ' 71"’ "1 < 20 percent.
v

5. RANDOM LOCATICN OF THE DOSE MEZSH IN THE INFINITE EXPERIMENT

5.1

5.2

Introduction

Random location of the d ose mesh is accomplished for the
infinite experiment by fixing the dose interval 4 and randomly
choosing the dose level, X, from the uniform distribution
over the interval (0,d). Even though no effort is made to
randomly locate the dose mesh, in certain routine screening
procedures, at least, the tolerance distributions are essen=-

tially randomly located with respect to the fixed dose mesh.

Unbiasedness of the Spearman Estimator

The expected value and variance of the Spearman estimator
for random choice of x_ will be denoted by E(X) and V(X).

Irwin (22) and Finney (15, 16) pointed out t hat when the
location of the dose mesh is selected at random the Spearman

estimator is unbiased., This is shawn as follows:

e
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Table h . 3

Bounds for the Relative Deviation of V(SE' xo) from ¥

fv@x,) - 7|

Tolerance

Bound on =
Distribution —— ———
Logistic .h535()’2'/ or .69326 ' 4 ,gmlf)? g or .6hou§)'2 £
Normal .L»u31f or .7&58()1 .2357€2 or .6677(3'2
Angular LL3L7 (3 or .8183()‘ .1981()2 or .7020&)‘2
Uniform .11330{) or .9000\3! Not applicable
One-Particle .5000() or .6930() ! Not applicable

Y
The first bound is cerputed from (l.1ha) and the second

bound from (4.162). (Sce Table 5.1 for the values of V

for tle several distrib %ions.)

2/
() is the ratic of the r--e interval to the standard devia-

tion, d=() o.

3/

e' is the ratio of the ose interval to distance (R)

tl

from the 20° to the 80 percentile, dzf)'f..



d
- 1 - .
E(x) = g 3 E(x‘xo) ax (5.1)
o
af x +id+d
1 - da, . °
= a— \ i(x0+ /2+ld) ‘ dF(x) d.XO
ot 7 x +id
0
rd p X +(i+l)d
15 ..d ©
=3 :Z.m (x0+1d+ /2) dF(x) dx_
"o x +id
)
® (\l+l)d+d/2 “+d/2
- %1. 5 \ ul  dF(x) du
" d d
id+7/, u="/,
; @ ‘L1+d/2
= -a"i ‘ u } dF(x) du
o w4/
2
d
® x+ /.
1 “
=3 udu dF(x)
d
e I xe/,
= ‘ xdF(x) = p

5.3 ‘1he Mean Square FError of the Spearman Estimator

Let Ex denote the expectation with respect to x  over
)

interval (0,d)., Iet B (i‘xo) denote the bias of X given x_.
The mean square error of the estimator is the variance and

can be written:

Exo E [ (i-—p).z lxo}

[}

V(X)

[}

B [v(igxo) ; B'“)(:'E‘xo)]

o)

PP S
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~E [V(i]xo)] +Exo [82(55 xo)] (542)

Qo -

The first component of V(Xx) in (5.2) can be evaluated:

E —v(" ) ° 1 d2 ;F( +id 3
x| xixo). = r i z x +i ) [l-F(xo+1d)] dxo
(o]
- d . -
. 4q . .
== ?» F(x0+1d) {1-F(xo+1d)j dx
O
) xo+(i+12?
- % 3 F(x),‘ l-F(x)] dx
Ty 444
o}
d - ]
=2 ) e [1r00) | ax (5.3)

Note that (5.3) is the same as (4.13), denoted by V. Thus
7 is the average of the conditional variance of X, taken over
tﬁe location of the dose mesh,

A simple exprecsion for the second component of V(X) has

not been obtained. The variance, V(X), is written:

v(X) =

Bie

& T (x) [l-F(x)] Qo+, [Bz(ilxo)] (5.k)

-0

o
Using the bound for the bias over values of X, in (L.3):

V(X) = ¥ + 0(a“)
For tolerance distributions satisfying the conditions given in

section L.2.7:

V() = V + 0ta®)
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The second componernt of V(x) (5.L4) is independent of n and
of smaller order in d than the first component, ¥ . V¥ con-
tains d only in the form of the fctor / , i.e. the inverse
of the nunber of subjects tested per unit interval on the
dose scale.

5.4 Values of ¥ for Severel Tolerance Distributions

An approximation to the variance of the Spearman esti-
mator for the case of a normal tolerance distribution, given
by Gaddum (19), is equivalent to ¥ . Finney (15, 16) com-
puted ¥ for the normal and logistic distributions. Table 5.1

"gives thewlues of V¥, as proportions of o and as proportions

Byo 80th percentile (R}, for

of the distance from the 20°
several tolerance distributions (see Table 2.2 for defini-
tions of these tolerance distributions.)

In section 4.3 it was seen that ¥ can be regarded as a
good approximation to V(il;o), and that V(ilxo) can deviate
from 7 by at most d /Ln .

In the present part ¥ was seen to be less than the uncondi-
tional variance of X , where the error is slight if d is
small. In the next section T will be established as the
asymptotic variance of X, as defined in the same section.

6. LARGE SAMPLE PROPEXRTIES CF TH: SPEARMAN ESTIMATCR FOR THE
INFINITE EXPERII™NT

6.1. large Sample Exverireats

The experire:ital design for the infinite experiment

consists of fixi-.s twe numbers: the nurber (n) of subjects
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Table 5.1

Values of ¥V for Several Tolerance Distributions

Tolerance l/

Distribution v

2 & 4

Logistic 'SSBF = 1.2881p " ER_.
o R°
Normal .*.?’?12?;1—- 1.5983 ‘J ‘o
o° R
Angular .S?Sa()ﬁ— 2.0376 f' -
2 2
. o R
Uniform .57714‘3 - 2.4942 f’ -
o° R2
One-Particle .SOOO(; — 960l P: =
v o o
7= = F(1-F)dx ; these values were used in Table L.3

-l

2/

- P is the ratio of tne dose interval to the standard

deviation, ds(: o

3y
! is the ratio of the dis*znce (R) from the 20th to the

BOth percentile, d={) 'R
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to be tested at each of the levels, and the distance (4)
between dose levels. Denote such a desgn by D(n, d).

The large sample experiment is usually described in terms of
a fixed 4 and increasing n, For the Spearman estimator this
method of increasing the size of the experiment will not
yield aconsistent estimator, The second compoasnt of

V(x) in (5.4) involves the conditicnal bias independent of
n, so that V(x) does not go to zero as n goes to infinity,
This points up the need for a more general concept of large
sample experimentas.

Let n' denote the aversge number of subjects tested per
unit on the dose scale, (n'-n/d). Then the large sample
expsriment is obtained by letting n' go to infinity., The
cholce of the corremonding valucs for n and * will be made to
minimize the mean square error for fixed n',

6.2 Optimum Choice of n and 4 for the Spearman Estimator

For fixed n' and random choice cf X, the variance

of the Bpearman estimator is minimized by choosing n and 4 as

small as possible, i.e., n=l and dal/n,. This follows

from the following thecrem:
Theorem 6.2,1: The mean square error of the Spearman estimater

based on groups of n subjects tested at dcee levels 4

units apart is greater than the mean square error for

single subjects tested at dcse levels d/n units spart.
Proof: Denote the two mean squere errors by MEE, and MEE,

recpectively. Denote the corresponding biases conditional

on x, by bn(x‘c) and ’bl(_x‘a) respectively,

IR = v, - ey > P Y e — _ -
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MEE - % [ F(1-Flax + E_ %y [bﬁ(xo)] (6.1)
MEE, = E{Bf F(1-F)ax + E, [b3(x,)] (6.2)

The first terms on the right hand sides of (6.,1) and
(6.2) are identical, Therefore it must be shown that

Exo[bs("o“ > Exo[bi(xo)] (6.3)

The conditional biases can be written:

xo+1d+d.
bn(x ) =2 f (xo+id+d/2-x)dr (6.4)
i=-00
x,+H4d
® o1 0+1d+(4-—-)-*1 ¢
By (xp) = o g0 (xpitard L o x)ar (6.5)
+1d+ ‘1~

The left hand side of (6.3) is::

(52(x,)] fx f’é( )ax,
I"x Xp)l = ¥ X5
O
, (eslla
[be(x

n-l

| ]
e

BaO

ba(x o2 ax, (6.6)



B

The expression bn(x°+ -'!-?) appearing in the integrand of
of the right hand side of (6.6) can be revritten in

terms of bl(x0)° From (6.4):

xot-'ﬁg--iid-td
sd o sd
b (x, + =) = L f(x +—+id+d/2-x)dF (6.7
n*" 0 n {m =c,

sd
Xy + o +1d

S = 0’1,2’ o.o(n‘l) .

+-°-S+id+("i-lm

f(xo+—+1d+d/a-x)dr (6.8)
ad

n-l
1- -0, J=0

J_
Xo + = +1d +

Then, adding and subtracting {-:-1- + -2%— in the integrand
of (6.8) :

xo-o-id.-o'-(-'l—--l——"':Ld

CD n-l
bn(xo+-;-9¢) = f[x +id+(1—)-4+—-x]dr

on
i= -0 J=0
x,+1d+ U—*—*‘)ﬁ

X, +1d+u--t‘9—

(o)
Z oo Jof(l -ﬂ—)ar (6.9)
x +1d+w

o] n

+

UV B

From (6.5), expression (6.9) can be written:




b (xg+ B) = b (x e & ., - " (1. 2y, (6.10)

J-O J+e

$Q+l+12d

b 4
O+1id + o

vhere A " L ar

J
is -0, 4 1d 4+ {j+e)a

0 n

n-1

Note that £ A, =1 for any j (6.11)
ga0 J+s

Since by is periodic with period %/_ 1t follows from

1l
(6.10) that

nel
b (x + & ) = b (x ) + 3 350 (1- g%il)Aa+J (6.12)

Substituting (6.12) in the right hand side of (6.6):
d

-1
£, 02xp)) - § 1" f[bec,),,

d
d Jzo (1- Bla,, 1% ax, (6.13)

On squaring the expression in the integrand in (6.13) the
middle term will be :



x, + 3
n-l rn-l

AL
..oJ Jz: (1- &= )A“J (6.14)

%o
Summing first on s the sum of the AJ” is one and the
sum with respect to J will then be zero. Therefore
(6.13) becomes:
2 2

Exo[bn(‘o” = Ex?[bl(xo)l +

+ f il.":1 ( nzl(l - A, )2 ax

5 J+s 0 (6.15)

=0

The second term on the right hand side of (6.15) cannot

be zero if F is a distribution function. Therefore,

Exo[bﬁ(xo) ] > Exo[bf(xo)] Q.E.D,
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6.3 Large Sample Properties of the Spearman Estimator

If o' is increased, vith nel and =1/ ,, as

required, it follows from (5.4) and the fact that the
bias squared has a bound of order dz, that the estimator

is consistent and the variance is

V(%) = £, f ;?l-F)ax«\o(l/n.a) (6.9)
-00
It is convenient, in the case of a sequence of
random variables, to approximate the variances by
simpler terms correct to order n~L, (When the sequence
does not have variances, the variances of a sequence of

limiting distributions may be used.) Such a sequence

of approximations will be called the asymptotic variances.

In this sense the first term on the right of (6.9) will

be called the asymptotic variance of x and will be dencted

by vA(i).

V(%) = 2, fu;‘(l-l-‘)dx (6.10)
-0



7. LARGE SAMPLE EFFICIENCY OF THE SPEARMAN ESTIMATOR FOR THE

INFINITE EXPERIMENT

7.1 Previous Comparisons of the Spearman Estimator with the

Maximum Likelihood Estimator

Finney (15,16) computed the asymptotic variances of the
maximun likelihood estimator, averaged over choices of X,
for the finite experiment, for the normal and logistic tol-
erance distributions, and then took the limit as the number
of levels went to infinity, He compared these values with the
msan square error of the Spearman estimator over choices
of X, for the same two distributions. The ratios were .981L
and 1,0000 respectively.

Cornfield and Mantel (10) showed that for the logistic
tolerance distribution, the maxirmum likelihood estimator
and the Spearman estimator were approximately equal and this
algebraic approximation irproved as d—30. Bross (9) evalu-
ated sorme sampling distributions through enumeration for the
maximum likelihood estimator ana the Spearman estimator. He
used the logistic tolerance distribution, four dose levels,
with n=2 and also n=5. In all cases examined,
the Spearman estimator was concentrated more closely about
the true mean tolerance than was the maximum likelihcod
estimator. These computational results were reproduced by

Baley {21) for the normal tolerance distribution,
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These results indicate that the Spearman estimator
compares favorably in precision with the maximum likelihood
estimator, at least for the normal and logistic distributions.
In this section the asymptotic efficiency of the Spearman
estimator is defined and various results are reported con-
cerning tolerance distributions that minimize or maximize
this efficiency. Efficiencies for the common tolerance dis-
tributions are given, the v alues for the logistic and normal
being the same as the ratios'given by Finney.

Definition of Asymptotic Efficiency

The efficiency of an estimator capn be defined in

terms of the guantity, I, called the information:

I = E(

where £ is the freguency function for the random variables
on which the estimator depends (11).
For the infinite experiment wi*h random choice of X s

the infermation is (see Appendix I):

F 2 (x)
L. dx
F(x)!l-F(xﬂ

1=2

d
The asymptotic efficiency, E, of an estimator for the
infinite experiment will be defined as the r atio of 1/I to
the asyrptotic variance of the estimator. For the Spearman

estimator,



Mb‘m’ i

1
E = __ZE:___
v, (%)

. X F(x)[l-r(x)]dx ‘

?p2(x) -1

= dx
F(x) [l-F(x)]

l/I is the asymptotic variance (n—> =) of the maximum
likelihood estimator, so that E measures the efficiency of
the Spearman estimator relative to the maximum likelihood
estimator.

7.3 The Spearman Efficiency for Several Tolerance Distributions

The f ollowing sections present computational results
for specific tolerance distributions. The results are
summarized in Table 7.1.

7.3.1. Logistic

The efficiency for the logistic is 1.0 since the logis-

tic distribution satisfies

2= . 2

F"=F
b d B

P F(1-F) = F

T7+.3.2. Normal

Finney evaluated the efficiency for the normal tolerance
2

distribution., The integral of F“/F(I—F) has to be obtained

through numerical methods, The r esult is E=,981k

For the angular distribution, both integrals are easily

evaluated and E=,8106,

R -~ 7 e ——r—————r— . Fon Wt e e - o




7.3.4. Uniform
The definition of E is not applicable to the uniform
distribution since the regularity conditions used in obtaine
ing I are not fulfilled., The particular difficulty is that
the distribution function is not differentiable for all values
of 1 (see Appendix I).

7.3.5. One Particle

The integrals for the one~-particle distribution are:

d d1l
-I-l.. F(l-F)dX -E-éc
(o]
N 2o - Lol
2| b geng| e wingl | zloln
S F(1-F) ol-ey 1k d

and the efficiency is .83191...
7.3.6. Algebraic
The above examples all irnvolve distributions with first
moments for all values of the parameter. The algebraic
distribution (Table 2.2) does not have a first moment for all
values of the one parameter:

S

F(x; s) = 1-x sV 1, x>=1

This distribution has a first moment with value p = E%

if )1, For sS1 the first moment does not exist,

F(1-F)dx = & ——S )1
n (s-1)(2s-1)

S
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F 2 -
n —-E'-———dx=32(s-l)h z '——}-'———3— s? 1
F(I-F) k=1 (ks—l)
and
2_1
E = .

/s 1
2 « 1,13
7 1~ ZS
k=1 k-""/s

Thus, in contrast with the preceding examples, E depends on

s.

lim E =  lim (2-1/s) 1
s -1 25-—41 ® (l-l/s)3
- lim 3 T

The lin . in +he denominator is one since:

o 3 n(-l)B
lm oz 8= L qsn Q1+ 3 > Y =1

s -1 k=1 (ks-l)3 sl k=2 (ks~l)3
Also
lim E = ;‘l—“ = 08319000
s~
T =
1%

Note that the limit of the efficiency as s becomes
large is identical with the efficiency for the one-particle
tolerance distribution. This might be anticipated by re-

writing the two distributions from Table 2.2,

uv

bk}

Algebraic Distribution: 1«(x+l)-s

. (5w >
Cne~-Particle Distribution: l-e (s=1)x X =0 g
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The ratio of the ith moments of the two distributions is
(S-l) (5-2). .e (S-i)
(s-1)}

This ratio goes to one as s becomes large.

The Logistic Tolerance Distribution and the Spearman Estimator

Theorem 7.4.1l:

The logistic tolerance distribution is the only symmetri-
cal tolerance distribution, with 2 translation parameter as
the single unknown parameter, for which the Spearman estima-

tor has full efficiency.

Proof: Let u be the translation parameter and let the toler-

ance distributions be written F(y-p). The efficiency for a

given distribution, F, is:

-3 o "l
fz(X)
E(F)= ax | Fx) (1-F<x)} dx
F(x) [l-F(x)}

Let G be an extremal function (symmetrical, differentiable)
of the functional Y(F)= [E(F)] L et V(x) be any function
satisfying the conditions:

V(x)=V(-x) (7.1)

V(x) is differentiable for all x (7.2)

for all t in a neighborhood of t=0, G(x)+tV(x) is a

distribution function with first moment. (7.3)

Then y(t)=¥ [G(x)+tv(x)] is a function of t differentiable

at t=0, and y'(0)=0.
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Table 7.1

Large Semple Efficiency (E) of the Spearman Estimator for the

Infinite Experiment for Several Tolerance Distributions }/

TOLERANCE DISTRIBUTION EFF TCIENCY g/
1. logistic 1.0000
2. Normal .981l
3. Angular .8106
4, One-Particle .8319
5. Algebraic .500 < E<= .8319
F 2 e
1
Y. F(1-F)dax | —&— dx
F(1-F)

2/ see sections 7.3.1, 7.3.2, T.3.3, 7+3.5 ard 7.3.6 for
computations.
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Let G'(x) be denoted by g(x) and V'(x) be denoted by
v(x})., Then

el

y1(o)= § __S____ ax V(1-2G) dx
G(1-G

)

26(1-G Vg 2(1-26) i
6(1-6)°

G(1-G) dx

&.__-———‘-\

Since G has a symmetrical density and V is symmetrical, the

integrand of the following integral is an odd function and

\ 2G(l-b)ﬂ dx =

6%(1-6)°
Then
y'(O)s V(l"zG) C,=- dx = 0
3 1 6%(1-6)
vhere
2
Gy= £ ax
G(1-G)

C,= G(1-G)dx

V(x) can be any function satisfying conditions (7.1), (7.2)
and (7.3) and 1-2G(x) cannot be identically zero on the
infinite interval, Therefore the necessary condition for

G{x) to be an extremal function of Y(F) is that



7.5

Ozzg (x)

Ci{ Gix) {1-0(;:)]}25 °

This implies that G(x) is of the logistic form:

-1
6(x) = {he"(“ B x)]
Q.E.D. -

Distributions with Efficiency of the Spearman Estimator Close

to Zero

If F(x) has a first moment the variance of the Spearman
estimator exists, i.e. the integral with respect to F(1-F)
is finite, Then, if the information is finite, the efficiency
of the Spearman estimator is greater than zero.

Distributions with a translation parameter as the single
unknown parameter can be specified for which the Spearman

efficiency is arbitrarily close to zero., Consider,

x
dt - x{ ™
F_(x; 1) = K(e)
° N - <uc =
- tee o<e

The efficiency can be made arbitrarily small by choosing e
close to zero; V(e) is unbounded as e goez to zero, while
I(e) is bounded away from zerc.

Consider the f oliowing bound for V(e):

Vie) = % F (x5 1) [l-Fe(X; u)} dx
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. % 2‘ F, (x;0) [I—Fe(x,-o)]dx
0
> d ‘
-4 \ [l-Fe(x,o)} dx
0
s 4 K(e)dt
=2 — dx
n t2 1l+e
P P l+
o X 1+2e
24 K(e)dt
a P dx
| )G
2 dK(e) .
I+e §+§e
n2 t
1l x

k) _1 1

(7.4)
n21*€ le2e 2e

The constant K(e) necessary to make Fe a distribution is

greater than %— for e<1; therefore V(e) goes to infinity

as e goes to zero.
I(e) can be written:

o -'\F 2
OF, (x51)
Q §

Fo(x51) [l-Fe (xsu)] =

I(e) =

To show that I(e) is bounded away from zero as e goes %o

zero, first note that
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OF| 2| OF|% K
Op d x [1 ,(X:-uezz] e
<1

Using the symmetry of the integrand and F(1-F) = I

pH
I(e) = 2| OB o

F(l-F)
i
> ) Kz(e)dx
=8 T
o [1* m]

Then the following inequalities are obtained:

1+x

I(e) = 8K2(e) l ---1?]15-53-

> 8K2(e) 1 ‘ dx

p2+2e xh+he

[

> 1 1
= BK° (e)
potee J+lie

LA T S (7.5)

It follows from (7.4) and (7.5) that E(e) goes to zero as
e goes to zero,.

7.7 Two Parameter Families of Toclerance Distributions

The results of the previous paragraphs are applicable

without modification to the case of scale parameter unknown
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when the tolerance distribution is symmetrical. (Estimation

of the scale parameter itself is d uscussed in Appendix III.)
Let the tolerance distribution be of the form F(y)

where y=0 (x-p). Let both{d and p be unknown. The infinite

experiment information matrix is given in 4ppendix I.

Letting -
‘ tidt
2o B
X Wdt
l (-4, ) Wat
= - $
A2 —
X Wdt

()]
F(t) [ 1-F(t))

The inverse element, Ill, corresponding to u is

where W(t) =

d A7+ A
e : 1A
A
SO
Note that if A =0, then Inrl/l when I is the information

for scale parameter known. If F is a symmetrical distribuation
then W(t) is gyrmetrical and AI*O.

Note also that if 1,1{0, the effect is to increase the

11

value of I above the corresponding value for s cale parameter
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known. The variance of the Spearman estimation is unchanged.
Hence, the efficiency for the Spearman estimator would be
greater in such cases for scale parameter unknown than for
scale parameter known.

8. THE SPEARMAIl ESTIMATOR FCR TLWE FINITE EXPERIMENT

8.1 Finite Experimchts

In previous sections (3, L, 5, 6, 7) the range of experi-
mcntation was infinite., The results obtained are useful in
ucsigning and interpreting cxperiments in which the dose
levels cover the greater portion of the range of F(x), say
from .01 to .99. As a supplement to these results it is of
intercst to investigate the effeect of using a finite set of
dnsc levels,

Let xo be an a priori cstimate of p and let the experi-
ment involve 2k+l dosc levels regularly spaced over the in-
terval (xo-a, x +a). The dose levels arc x,=x +id, i=0,

1, %2,...tk, with kd=a. Let N be the total number of sub-
jects used in the assay, N=(2k+1)n.

8.2 The Spearman Estimator

The variance and bias of the Spcarman estimator are

. i K
Va(x‘xo) - -i Fi(l—Fi) (8.1)
k-1

B (E|x,) = (xgma-/p)Fxma-/p)s : CRTALUWER

+(xo+a+d/é) [l-F(xo+a+%j} -1 (8.2)




Theoren 8.2.1 let the range of dose lavels be (xo-a,xotn), tho
total samplc size be N, and the numbers of subjects at each
dose level be equal (n). Then the maximum variance of X over
all possible F is minimized by minimizing d (i.e. by maximiz-
ing the number of dose lovels).

Proofs From (8.1) the variance of the estimator is

r8y2 (2k+1
()

k
v, (% ‘ xo) -i F, (1-F;) (8.3)

<1
Fi(l-Fi) = 8o that
2
x5 gl L

The bound is attained for F(x) a two point distribution

defined by :

1
P(x=xo-a-e) = /2 edo

1
P(x=x0+a+e) = /2

The bound is minimized by chuesing k as large as possible,
i.e. by choosing d as small as possible. U.E.D.

There arc distributions for which an increase in k results
in an increase in thc variance of X. Consider the distribu-

tion given by:

P(x-xo-B/ha)-l/2

prosx /2
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The variances for three and five levels are:

- 332
k=1 : Va(x.!xo) . e
2

k=2 : V(X |x ) = b
16N

The variance for the normal distribution for several
values of k is shown in Table 8.1.a. The results are for
X e For the dose ranges used, the variance decreases as k
increases.

For asymmetrical locztion (xo/u) the Spearman estimator
will be biased. Table 8.1.b presents the mean square error
for the normal distribution for sevcral valucs of a, k, and
N, for several values of X, -

Information for the Finite Experiment, Scale Parameter Known

Denote the information for the finite e xpcriment described

in section 8.1 by Ia(xo). Then

2 /ia
vy kK F (X

Ia(xo)=

R (CONSEIE!

Table 8.2.a prescents the values of N/O2Ia(xb) for the
normal distribution, for X =Hy for several values of a and
k. The results show that therc are extreme situations
(three levels placed at u~1l00, p, and p+1l0o) for which an
incrcase in k results in a decrcase in the information.

However, when a is 20 or less, the denser the dose lovels,
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Table 8.1.a
Variance (Va) of the Spearman Estimator for the Mean of a Normal

Tolerance Distribution, for the Finite Experiment

Middle |Dose NV, (x| x)
Dose Range
location g

(ot (£ 3 el ko2 kw3 kel kB ke20 kel
g

0 1/2] .51 .36 .32 .30 .27 .25 24
0 1{1.55 1.18 1.06 1.00 .91 .87 .83
0 2 | 3.50 2.81 2,58 2.51 2.36 2.25 2.19
0 L 12,00 5.89 s5.08 5,02 L4.75 L.58 L.50
0 10 |75.00 31.25 19.LL 15.18 12.37 11,46 11.23

l/The number of dose levels is 2Zk+1l.
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Table 8.1.b

Mean Square Error (HSE‘) of the Spearman Estimator for the Mean

of the Normal Tolerance Distribution, for the Finite Experiment

Middle | Dose N [ MSE_(X |« )]
Dose Range %
Locationr o
N=10 N=100
(:ﬁ:t) ( %) ke m2 k=l a1/ ka2 k=l
0 +1 1,55  1.18 1.55 1.18
.5 1.51 1.22 1.92 2.36
1.0 1.55 1.63 L.51 8.60
2.0 5.13 7.99 47.09 77.35
3.0 23.30 31,20 232.36  311.65
4.0 62.57 75.67 625.65 756.66
0 +2 3.5 2.81 3.54 2.81
.5 3.38 2.79 3.38 2.79
1.0 3.22 2.7 3.22 2.76
2.0 3.29 2.37 3.48 5.38
3.0 2,64  5.45 1.86  L7.11
4.0 11.20 23.35 109.60 232.41
5.0 40.12 62.57° 401.06  625.66
0 th 5.89  5.08 5.89 5.08
.5 5.64L  5.08 5.64 5.08
1.0 5.39 5.08 5.39 5.08
2.0 5.89 5.0 5.89 5.07
3.0 5.37 L.8 5.37 L.93
L.0 5.47 L. 5.66 7.00
5.0 3.72 6.0 12.94 L8.03
6.0 11.38  23. 109.78  232.50
7.0 40.13  62.5 401.07 625.66

}/ The number of dose levels is 2k+1l.
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Table 6.2.a

Information (Ia) for Estimation of the Mean of the Normal Tolerance

Distribution with Scale Parameter Known, for the Finite Experiment

Middle Dose N
Dose Range -
location ¢ Ia (xo )

Xo~H (:'g) k-ll/ k=2 k=3 k=l k=8 k=20 k=40

0 1/2 {1.67 1.64 1.63 1.63 1.62 1,62 1,62
0 1 {1.98 1.87 1.83 1.82 1.79 1..78 1..77
0 2 {3.34 2.82 2,66 2.59 2.L8 2.k2 2.38
0 L {L.70 5.56 5.16 L.98 L.71  L.sh  L.ub
0 10 |L.717 7.85 10.81 12.22 11.76 11.35 11.08

-1-/ The number of dose levels is 2k+l.
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i.e. the greater the number of dose lecvels, the greater the

information.

Table 8.2.b presents the values of N/GQ for

Ia(xo)

values of a, k and N, for values of x_#u.

Efficiency of the Spearman Estimator for the Finite Experiment,

Scale Parametcr Known

The efficiency }/ of the Specarman estimator for the finite
experiment will be defined as the ratio of the inverse of the

information to the mean square error of the estimator:

E (x ) ® == (8.4)
a o MSE_(% | x_)
a [¢]

Table 8.3.a prcsents computational results for the normal
distribution for xosu for sevcral values of a and k.

Table 8.3.b presents computational results for the normal
distribution for scveral values of a, k and K for values of

xo/ Mo

Efficicncy of the Spearman Estimator for the Finite Experi-

ment, Scale Parareter Unknown

Table 8.2.b indicates that the efficiency of the Spearman

1

The efficiency (E_) as defincd in terms of information
(8.4) is a useful measuré becausc the information is intrinsic
to the expcriment itseif and not dupetdent on any method of
estimation, The inversc of the informaticon cannot be taken
as an absulutc lower bouncd on the variaznces of all cstimators,
nor can it bc assumed that there is any estirmator with vari-
ange tuis small. However, it is a lower bound for the vari-
ances . f all unbiased cestinators.

- e — e e e
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Table 8.2.b

Information (Ia) for Estimation of the Mean of the Normal Tolerance

Distribution with Scale Parameter Known, for the Finite Experiment

Middle | Dose N
Dose Range
Location o Ia(xo)
X -
(=) (£ 2) e k=2 k=l
o) +] 1.98 1.87
.5 2.10 2.00
1.0 2.L9 2,43
2.0 5.13 5.53
3.0 20.51 25.08
4.0 197.37 270.27
0 +2 3.34 2.82
.5 3.33 2.86
1.0 3.36 3.01
2.0 3.90 4.09
3.0 6.62 8.55
L.C 22.78 34.18
5.0 205.48 328.95
0 *ly 5.56 L.98
.5 5.54 L.98
1.0 5.52 L.98
2.0 5.56 £.02
3.0 5.61 5.042
L.o 6.51 7.37
5.0 11.03 15.39
6.0 37.97 61.52
7.0 3Lz.4L7 592.11

}/§he number of dose levels is 2k+l,
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estimator can be very small for N=100 when the a priori
estimate, x _, for u is in error. The information was com-
puted assuming scale parameter known. If the scale para-
meter is unknown the information is considerably decreased

for xof‘u. Table 8.4 presents the element Iil(xo) of the

inverse of thc information matrix for estimation of the
mean of the normal telerance distribution for both location
and scale parameter unknown. Table 8.5 presents the cor-
responding efficiency (Eil) of the Spearman estimator for
two unknown parameters. Tables 6.3.a, 8.3.b and 8.5 demon-
strate that for the uv:ial finite level design with limited
numbers of subjccts the Spearman estimator has high efficiency
relative to the information in the experiment, when the toler-
ance distribution is normal,

9. REGULAR BEST ASYMPTOTICALLY N(DMAL ESTIMATORS WITH THE WRONG

MODEL

9.1 General Discussion

One advantage of the Spearman estimator is t hat no para-
metric form need be specified for the tolerance distribution.
This advantage would be of no practical irmportance if the
competing parametric estimator based on a common model has a
distribution that is insensitive to moderate changes in the
functional form of the true tclerance distribution, In this

section computations are prescnted to illustratce the effect
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Tablc 8.3.a
Efficiency of the Spearman Estimator for the Mean of the Normal

Tolerance Distribution with Scale Parameter known, for the Finite

Experiment

Middle | Dose 1/

Dose Range E,(x )=

Location o

X_-{

( g Yy | (¢ %) k-lg/ k=2 k=3 ks, k=B k=20 k=IO
0 1/2 | 3.27 L.56 5.09 5.43 6.00 6.8 6.75
0 1 1,28 1.58 1.73 1.82 1.97 2.0L 2.13
0 2 S 1.00 1.03 1.03 1.05 1.08 1.09
0 L .39 9L 1,02 .99 .99 .92 .99
0 10 .06 .25 .56 .80 .95 .99 .99

y Ea(xo) = l -
I, (x )MSE, (X | x)

g-/ The number of dose levels is 2k+1.
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Table 8.3.b
Efficiency (Ea) of the Spearman Estimator for the Mean of the Normal

Tolerance Distribution with Scale Parameter Known, for the Finite

Experiment
gigzle g:gze Ea(xo)l/
Location
(xg p) (+ %) k=12 Nkig k=l k=1 Nkigo k=L
0 ]l 1.28 1.58 1.28 1.58
.5 1.39  1.64 1.09 .85
1.0 1.61  1.L9 .55 .28
2.0 1.00 .69 11 .07
3.0 .88 .60 .09 .08
4.0 3.15 3.57 .32 .36
0 +2 9L 1.00 Sk 1.00
.5 .99 1.02 .99 1.02
1.0 1.0h  1.11 1.0L 1.09
2,0 1.19  1.73 1.12 .76
3.0 2.51 1.57 .56 .18
L.0 2.03 1.6 21 .15
5.0 5.12 5.26 .51 .53
0 £l .94 .98 .ok .98
.5 .98 .98 .78 .98
1.0 1.02 .98 1.02 .98
2.0 e 99 9k .99
3.0 1.0h 111 1.04 1.10
L.0 1.19  1.84 1.15 1.05
5.0 2.97  2.53 .85 .32
5.0 3.3h 2,62 .36 .2
7.0 ; 8.53  9.L46 .85 .95
Y g (x) - L

Ia(xo)NSE&(i‘!g)

3 . .
=/ The number of dose levels is 2k+l.
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Table 8.4

Inverse Information (Iil) for Estimation of the Mean of the Normal

Tolerance Distribution with Scale Parameter Unknown, for the Finite

Experiment
1
Middle Dose NIll(x )‘/
Dose Range a 0
location 02
Xo a 2/
( = ) (¢ 3) k=l k=2 k=l
0 +1 1.98 1.87
.5 2.L0 2.53
1.0 b.31 5.L3
2.0 38.63 51.20
3.0 907.36 959.53
0 +2 3.34 2.82
.5 3.33 2.87
1.0 3.37 3.13
2.0 L.71 6.98
3.0 66,80 62.94
0 AN 5.56 L.98
’S SOSh h~98
1.0 5.52 L.98
2.0 £.56 5.03
3.0 5.62 5.63
L.o 7.85 12.57
5.0 111.33 113.30
1

Iil(xb) is the element of the inverse of the information

matrix corresponaing to tne estimator of p .

3/ The number of dose levels is (2k+1).
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Table 8.5
Efficiency (Eil) of the Spearman Estimator for the Mean of the Normal

Tolerance Distribution with Scale Parameter Unknown, for the Finite

Experiment
iddle | Dose el )l/
se Range a o
Location
X - N=10 N=100
( g ) (% %) k-lg/ k=2 k=l kel k=2 k=L
0 +1 1.28 1.58 1.28 1.58
.5 1.59 2.08 1.25 .88
1.0 2.79  3.34 .96 .39
2.0 7.52 6.1 .82 .66
3.0 38.9L 30.76 3.90 3.08
0 +2 S 1.00 9L 1.00
.5 .99  1.03 .99 1.03
1.0 1.05 1.15 1.05 1.12
2.0 1.L3  2.95 1.35 2.53
3.0 25.29 26.56 5.63 11.55
0 1 .9h .98 .9h .98
.5 .98 .98 .98 .98
1.0 1.02 .98 1.02 .98
2.0 9L .99 .9l .99
3.0 1.05 1.16 1.05 1.1k
L.o 1.Lk 3.14 1.39 1.79
5.0 29.93 18.65 8.61 2.36

211
I‘ (xo)

y Ei'l(x ) B cnmm—————
© MSE‘(Q !xo)

2/ The numbcr of dose iocvels is Zk+l.
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on some RBAN eatimatorsl due to changes in the functional
form of the tolerance distribution.

The angular model is used and the characteristics of some
RBAN estimators based on this model are examined for true tol-
erance distributions with the forms: logistic, normal and
uniform. The experimental designs for which computations are
given are one, two, and five level designs with scale para-
moter known, and some two level designs with scale parameter
unknown.

The RBAN estimator used in each of these finite designs
is an explicit function of the independent binomial variates
corresponding to the several dose levels. Consequently the
mean and variance of the limiting normal distribution of the
estimator (as the sample sizes at the fixed dose levels in-
crease) can be computed. These values are called the asymp=
totic mean and asymptotic variar~~. Since the estimator is
inconsistent when the wrong model is used, the asymptotic
mean square error is computed from the asymptotic mean and
variance and this value is compared with the asymptotic vari-
ance of the RBAN estimator under the correct mcdel.

One Level Experiment

The model used for the tolerance distribution is the

angular distribution (see Table 2.2). Assume that the scale

1 See Neyman (26) for the definition of RBAN (regular
best asymptotically normal) estimators. See Taylor (29) for
a discussion of RBAN cstimators in bioassay.
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parameter,(? » 1s known and that the experiment consists of
teeting N subjects at the dose level, x=0. Let the observed
proportion respbnding at x=0 be denoted by p and the e xpected
proportion be denoted by P. Let yssin-lJr— - ﬁ/h . Then the

maximum likelihood estimator of p is:

pi 8-% . (9.1)

The asymptotic mean, variance and mean square error of the

estimator, for a given value of P, are:

* Y
VL) 5 ) (9.3)
ME_, (1)) = @% (ﬁﬁwu%)? (9.1)

where Y=sin J? - "T/h

and P=E(p).

If the true tolerance distribution is angular with scale
parameter(} , then pu= - XL and the asymptotic mean square
error is the variance (9.3). Denote the angular distribution
by G. If the true tolerance distribution is F§G, then the
estimator will rot be consistent. The asymptotic variance
will remain the samc but the bias contribution to the mean

square exrror will not be zero.
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The asymptotic mean square error can be computed for any
given F and N. Denote this value by MSE_, (4" | F). In
specifying F it is necessary to choose the value of the scale
parameter. This should be done so that the F is "corparable"
to the model, G, with its known, fixed@ . Three methods
for choosing scale parameters for the tolerance distributions
are used: (i) equating standard deviations. (ii) equating
the distances between two specified percentiles. (iii) equat-
ing the information per obserwvation.

As a measure of the effect of the tolerance distribution,
F, on the estimator based on G, the asymptotic efficiency,
EaA(G‘ F), is computed

MSE_, (u” | )

E,(G|F) = - ‘
ME_, (w" | F)

Tables 9.1.a, 9.1.b and 9.1.c contain computational
results for F normal, logistic and uniform when the model is
angular. The results indicate that the differences due to
the several tolecrance distributions are negligible even for
N of 100, when the tolerance distributions arc equated on
distance between the ZOth and Bcth percentiles and the ex-
pected proportion responding is not too far from S0 percent,
say between 15 percent and .5 percent. However, when the
distributions are equated on standard deviation the asymptotic

mean square error does show a marked decrcase due to bias for

N of 100 for some values of P (e.g. for the logistic, E=.66
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Table 9.l.a

Asymptotic Efficiency (EaA) for an RBAN Angular Estimator for Three
Tolerance Distributions having Standard Deviations the Same as the

{odel (One Dose lLevel with N Subjects)

o haspond NGRS
ing at the
Single Dose | _ N = 10 i N = 100
Level Logistic Normal Uniform | Logistic Normal Uniform
(F) (F) (F) (F) (F) (F)
1 L3 .66 .69 .07 .17 .18
3 .92 .96 .89 .56 .71 L5
5 1.00 1.00 .97 99 1,00 .78
7 .96 99 1.00 <7l .93 97
10 91 97 1.00 .51 .79 .96
15 87 .96 97 Lo .69 .78
20 .87 .95 .96 3l .68 .69
25 .89 .95 .96 L5 .72 .68
30 .92 97 .96 .5k .78 .72
35 .95 .98 .97 66 .85 .79
Lo .98 .99 .99 .81 .93 .88
L5 .99 1.00 1.00 N .98 97
50 1.00 1.00 1.00 1,00 1.00 1.00

. 3*
1SE,, (ky | ©)

NSE_, (uy | F)

l/EaA(GlF) .

where F s the true tolcrance distribution andG is the
»
angular model. See (9.1) for the definition of My o

BRI — ne, s i Wl
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Table 9.1.b
Asymptotic Efficiency (EaA) for an RBAN Angular Estimator for Three
Tolerance Distributions heving Distances Between the 20th and 80th

Percentiles the Same as the Model (One Dose lLevel with N Subjects)

Cont, Rospond B\ (0| Y
ing at the ?
Single Dose N =10 1 N = 100
Level Logistic Normal Uniform | Logistic Normal Uniform
(F) (F) (F) (F) (F) (F)
1l .15 .37 .50 02 .06 .09
3 Lo £8 .68 .06 .18 .18
5 £2 .84 .81 .1 3h .30
7 .78 .92 .88 .27 53 b
10 .92 .97 .95 .53 .78 .68
15 W99 1.00 99 W92 97 NN
20 1.00 1.00 1.00 1.00 1.00 1.00
25 33 1.00 11.% .98 99 99
30 .97 1.00 1.00 .96 99 97
35 1.00 1.00 1.70 97 1.00 37
Lo 1.00 1,00 1.00 .99 1.00 39
Ls 1,00 1.00 1.00 .95 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00

ISE, (i | ©)

v ¥*
nSLéA(pl' F)

Y g G|F) -

vhere F is the true tolerance distribution and G ie
»
the angular model., See (9.1l) for the definition of Ky
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Table 9.1.:c

Asyrptotic Efficiency (EaA) for an RBAN Angular Estirator for Three
Tolerence Distributions having Information the Same as the Model

(One Dose Level with N Subjects)

Cons eap AL
ing at the
Single Dose i = 10 4 N = 100
level Logistic Normal Uniform Logistic Normal Uniform
(F) (F) (F) (F) (F) (F)
1 A1 .01 .Cl .01 .00 .00
3 .20 .0l ol .02 .00 .00
5 .30 .09 .10 .0l .01 .01
7 .50 A7 .19 .07 .02 .02
10 .58 .32 .38 Jd2 .0l .06
15 L6l Nl .70 .15 .15 .19
20 .80 al s .28 .20 .23
25 .89 .86 .88 U5 .38 L2
30 .95 .94 .95 66 .80 Ol
35 1,00 1.00 1.00 1.00 1.00 1.00
Lo 1.00 1.00 1.0 1.00  1.00 1.00
L5 1.00 1.00  1.00 1.00  1.00 1.00
50 1.00 1.00  1.00 1.00 1.00 1.00
*

where F is the true tolerance distribution and G is
the angular model. See (9.1) for the definition of
»

Hl .
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at P=35 percent, and E=.34 at P=20 percent). FEquating in-
formation shows even larger effects on the efficiency for
small valuws of P,

The resulis for the angular model and estimator have
been corroborated by repeating the computations for the log-
istic model and its estimator, Results analogous to those
in Table 9.1.b are presented in Table 9.2 for the logistic
estimator.

Since the results presented are asymptotic approxima-
tiong, it is of interest to sece whether the relationships
indicated by these corputations are valid in the range of
sample size used. Exact computations analogous to Table 9.l.c
are presented in Table 7.3 for N=10.

Two Level Experiment

Again let the rmodel and estimator be based on the angular
distribution (Table 2.2). Let the experiment consist of &1
subjects tested at X=ii, = -% and 3N subjccts tested at
x-x2-§ . Let p. and P, be the observed and expected proportions
respectively, i=1,2. Let yi-sin'l\/EZ - n/h .

If the sc:zlic paramccar,(!, is known, the RBAN estimator

used will be denotcdlby u; and is:
92 .- }/C’ (9-5)

where § = §(y,+7,)
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Table 9.2

Asymptotic Efficierncy (Eu) of an RBAN logistic Estimator for Three
Tolerance Distributions having Distances Between the 20th and the
80th Percentiles the Same as the liodel (One Dose Level with N

Subjects)
Expected Per 1
Cent Respond- E&A(G' F)_7
ing at the ,
Single Dose | N = 10 1 N_= 100
Level Normal Anguiar Unifomm Normal Anguiar nilform
(F) (F) (F) () (F) (F)
1 09h 079 065 .63 027 016
3 96 o83 67 70 32 A7
5 97 88 o7l oT9 oli2 22
7 59 52 81 86 55 30
10 99 96 90 93 o7L A48
15 low 1000 .98 .99 .9h 085
20 1,00  1.00 1,00 1,00 1,00 1,00
25 1.00 1,00 1,00 1.00 98 9L
30 1,00 1,00 1,00 1,00 97 B89
35 1,00 1,00 1,00 1.00 97 .88
ho 1,00 1,00 1,00 1.00 98 93
hs 1.00 1.00 l.m 1.00 099 098
50 1.00 1,00 1,00 1.00 1,00 1,00
»*
MSE . ( Q)
Y g, (c)|F) - —o “3;!
¥SE_ (u | F)
PRl |

where F is the true tolerance distribution and G is
the logistic model.
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Table 9.3

Exact Efficiency (E‘) for an RBAN Angular Estimator for Three Tol-
erance Distributions having Information Equal to that for the Model

(One Dose Ievel with 10 Subjects)

Expected Per }/
Cent Respond- Ea(G’ F)
ipg at the
i:gg%e Dose Eé%igtic N0f§§I ﬁﬁ%ggrm
1 06 .01 01
3 ol7 06 <06
5 29 .18 21
7 Ohl 037 O&u
10 56 66 76
15 o76 RN «98
20 #89 1,01 1,02
25 95 1,01 1.02
30 «98 1,01 1,01
35 99 1.00 1.00
Lo 1,00 1,00 1.00
L5 1,00 1,00 1,00
50 1.00 1,00 1.00
SE (1
Y E (G| F) = el 19

KSE_(uy | F)

where F is the true tclerance distribution and G is
the angular rodel.
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If the scale parameter is not known, the RBAN estimator

“
used will be denoted by u; and is:

1 v
e o L
Yo,

(9.6)

The asymptotic means, variances and mean square errors

for the two estimators, for given P1 and P2 are:

Y. +Y
E,, (by) = - == (9.7)
2@
wherc Yi- sin"l/P:.L -W/h
¥* 1
VaA(“'Z) = L—ET (9.8)
Yo+
1 1 72,2
MSE  (u,) = — + (u+ ) (9.9)
ak e kug 2(3
Y. +Y
By ) = - =2 (9.10)
Ypmty)
2 .2
Y +Y
1 1 271
v L] 9-11
aA(“.; ) = 53 . -’z'—‘)qE ( )
271
2 2 - 7
Y, +7 Y. +Y 2
B8 (') = gy ——p ¢ (e =2 (9.12)
(Y2-Y1) 2(1’2- 1)

'
If the tolerance distribution is angular, p; is consist-

A ‘ . . #*
enty and if, in addition, the scalc parameter is (} then p,

is corsistent.
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Denote the angular tolerance distribution by G. If the
true tolerance distribution is F¥G, then both estimators will
be inconsistent, The asymptotic mean square error can be

determined for given F and N, for specified values of P, and

1
P_. Tablos Qh.a and9.L.b present asymptotic efficiencies of p;

2

and p,;' for F taken to be logistic when the model is angular,
The results in Tables 9.4.a and 9.L.b show that in both cases
the effect of a change in F from angular to logistic has
little effect on the asymptotic mean square error of the

angular estimator.

The 2k+1 level Experirent

Again let the model and estimator be based on the angular
distribution. Let the experiment consist of ﬁ-%— subjects

tested at sach of 2k+l levels. Lot the dose levels be

0 A SR U =
22 k"7 2k TP ettt o2kt 2

let the observed proportions be denoted by Py and the expected
. \ - e ein—d T
proportions by P,. Let y,= sin f;; - /h .

If the scale parameter, ‘3 , is known, then the maximum

likelihood estimator is denoted by u; and is

by w =L (9.13)
5 p K
Iy
_ o 1
where y = Z(T

The asyrptotic mean, varilancce ard mean square error of the



78

Table 9.L.s
Asymptotic Efficiency (E a.A) for an RBAN Angular Estimator for the

Logistic Tolerance Distribution (Scale . Parameter Known: Two Dose
levels, %N Subjects at each Dose Level)

Expected Per Cent Responding E,(C il" )l'/
Lower Upper
Level Level
(Pl) (Pz) N = 10 N = 100
10 15 .70 019
10 20 30 #28
10 30 093 «56
10 Lo #98 88
10 %0 1.00 1,00
10 60 99 Sk
10 70 <98 <88
10 80 «98 89
10 90 1,00 1,00
20 Lo 1,00 97
20 éO 1.00 099
20 80 1,00 1.00
Lo 50 1.00 1,00
Lo €0 1,00 1.00
MEE_ (
ai 1SR ( #* ‘ F )
LN aA p‘a /

where F is the logistic tolerance distribution and G
is the angular model. See (9.5) for the definitior

»
%) ¢ “2 .
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Table 9.Leb
Asymptotic Efficiency (Eu) for an RBAN Angular Estimator for the
logistic Tolerance Distribution ( Scale Parameter Unknown: Two

Dose Levels, #N Subjects at each Dose Level )

Expected Per Cent Responding E, (G IF)-I/
Lower Upper
Level Level

10 15 1,00 96
10 <0 99 92
10 30 39 91
1 Lo 1.00 96
1o 50 1.00 1,00
10 60 99 .96
10 70 .98 | .89
10 80 «98 .89
10 90 1,00 1 1.00
20 Lo 1,00 99
rav ) €0 1,C0 1,00
20 8o 1,00 1,00
bS]

ko 50 1.00 1,00
o €0 1.30 1,00

Y MSE“(pﬁ'l G)
E,(G|F) = =

*
MSE‘A(Pz' ‘ F)

where F is the logistic tolerance distribution
and G is the angu'lar models Cee (9.6) for the
definition of u; .
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estimator are, for given Pi:

Eu(u;) -- 1 (9.1k)

b

wherse Y i-ain—l fP.i 1y L

k
1Y
i
and ¥ = -k
2k+1
vu(u;) o« 1 (9.15)

MSEM(H;) - -hf-z- + (pe+ -G- 2 (9.16)

When the distribution is angular, the estimator is
consistent. lLet the angular tolerance distribution be denoted
by G. For FAG, the asymptotic mean square error cante calcu-
lated. For G located to give a specified set of Pi a com-
parable F must be chosen. An F cannot be chosen whichwill
give the same values as the model at all levels. In the com-
putations F was chosen to give the same values at the end-
points of the range of dose levels, i.e. at x_, and X
Table 9.5 presents the results of computations for the case
of five dose levels, angular estimator, and the logistic tol-
erance distritution., The effect of the F on the asymptotic
mean square error is again seen to be negligible. In fact the
results for five levels ,'P known, duplicate aimost exactly the

results for two 1evels,(3 known (Table 9.L.a).
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Tatle 905
Asymptotic Efficiency (Eu) cf an RBAN Angular Estimator for the

| Logistic Tolerance Distribution ( Scale Parameter Known: Five Dose

| Levels, N/5 Subjects at each Dose Level )

| Expected Per Cent Responding E,, ( 'F)l/

J Lowes?t Highest

| Dose Dose i
(Py) (Pg) N =10 N = 100

‘ 10 15 70 19

10 20 o79 27

‘i 10 30 W91 50
10 Lo 96 oTh
10 50 99 92
10 0 1.00 o939
10 70 1.00 1,00
10 80 1,00 1.00
10 90 1,00 1.00

IJBE“(LLE | 6)

Y E . (G]F) =
“ MSEM(LL; | F)

where F is the logistic tolerance distribution

and G is the angular model, See (9.1h4) for the
»

definition of u5 .
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9.5 Summary of Wrong Model Investigation

The above computations indicate that in the case of para-
metric estimation a model can be chosen and slight deviations
of the true tolerance distribution from the aseumed functicmal
form will have 1little effect on the mean square error of the
estimator. (It is important that the tclerance distribution
have about the same spread, measured in interpercentile de-
viation, anticipated in the model, if the scale parameter is
assumed known.)

Previous sections (7, 8) have shown that the Spearman
estimator is a very efficient estimator compared with the
amount of information available in the experiment. This
section indicates that this efficiency would not be greatly
increased if comparisons were based on the mean s quare error
of fully efficient parametric estimators taking into consider-
ation the possibility of using a wrong model. In spite of this
aspparent robustness of the parametric estimators, the
Spearman estimator is recomsended for use in most quantal assay

experiments dbecause of its simplicity and high efficiency.
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APPENDIX I. THE DISTRIBUTION FUNCTION AID INFORMATION FORTHE

I.l

INFINITE EXPERIMENT
Distribution Function for the Infinitc Experiment

Lenma I.1 Let F(x) be a tolerance distribution. Specify a value

TR 5 APt

I.2

for d. Choose X, randomly from the interval (0,d). Let

X5

variable with expected value F(xi) for i=0,%+1,%2,.... Let

=xo+id, 1=0,%1,22,.... « Teke n observations on a Bernoulli

all the observations be independent. Let r, be the number

i

of responses at x Then this infinite experiment determines

i.
a probadility function for the r, on the infinite sample

space.

Proof: Since the r, are independent sums of independent

mp—————

Bernoulli variables, the distribution functions for finite

sets of the r, satisfy the consistency conditions on page 29

i
of Kolmogorov (24). The lemma follows immediately from the
theorem on the same page.

Information for the Infinite Experimont Scale Parameter Known

The information for the infinite experiment will be
defined as the limit as k —> = of the information for the
finite experiment, with dose levels xi-xo+id, i=0, %1, %2,
ees %k, and x, randomly chosen.

The information for the finite experiment with f ixed

where h  1is the density of the finite sequence of binomial
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variables rs, i=0, £1, %2, ,.. tk.

K. n Ty n-r,
h = TJ (ri) I"'i (l-Fi) i
Kk an
Ik(x)'z—ﬂ—" vberer“i-?-r-l
° =k Fi(l-Fi) M xex,

The information for the infinite experiment, I, will
be defined as

I= lim E [I(x)]
k=)o J(o k™o

d 2

1 k nF 4
K -k F, (1-7,)

2

F
I= g— —E gt
F(1-F)
It «cen te shown that if p is a translation

parameter then I is finite.

Information for the Infinite Experiment, Scale Parameter

Unknown
Let F be written F[P (x-u)] . The information matrix
for the infinite experiment will be d efined as the matrix

obtained as k —« for the finite experiment.
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The information matrix (Ii j) for the finite experiment

with given X, is

e -

2

k Ty k PuiFp g
z z

« FA-Fyp) « Fg(1-Fy)

2

« PFaFp g g

2 p @-F,) z

-« F(Fy -k F, (1-F,)

—

Ir X, is randomly chosen and tle limit is taken as k —)e

the matrix is:

’ F'2 tF'?
e aa -2 dt
da| F(1-F) (3 4| F(1-F)
U B -
tF'® t%p'2
n n
g T & 3% | Fa-T) a
The element of the inverse matrix corresponding to p is:
n E tzF‘2 4t
Al (33d F(1-F)
2 12 2 2 ¥4 2
n Jtzl-‘ dtj F dt - B tF it
d:(}: F(1-F) F(1-F) d (3 F(1-F)
A e A
) 1 1+ "2
, 12 A
ot dt 2

(3d

L W )

F(1-F)
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where
12
Xt F__ 4t
A F(1-F)
l E
2
X ™,
F(1-F)
(t-Al)2 -—F———-dt
A F(1-F)

2 K F'2
F(1-F)
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AFPENDIX II. BERNOULLI PERIODIC FUNCTIONS AKD THE SULER-
MACLAURI.! FORMUIAE

IZ.1 The Bernoulli Periodic Functions

The Bernoulli periodic functions, Pn(t) , and the Euler-
Maclaurin formulae are presented here, For details of the
development of the formulae the reader is referred to Cra-
mer (11) pp. 122-125.

The Bernoulli periodic functions are:

P. (t) = 2
2n
K=l 22x‘x l(kn)Zn

cos kTit

n=l,2,.e0

o«

)= 3 sin kNt

P2n+1(t — — n=0, 1, 2,...
k=l 2P (kT)“"

These functions satisfy
! n-1l
Pn(t) = (-1) Pn_l(t) .

The first three Bernoulli functions are (see reference 1,

Pe 138):
P.(t) = L.t V<<l
1 2

2
L1t ot "

2 ,3
Pj(t)--tﬂ-}wg- 0<t<1

In paragraph 4.2.7 the sup Pn(t) is desired for n=1,2 ard 3.
t

Using the polynomial expressions, the following are obtained:




§1

1
sup Pl(t) -3
t

sx;p Pz.(t) = %5

sup P_(t) = ,0080...
y 3

IT.2 The Euler-Maclaurin Formulae

Let x_ and d be constants and let the 1™ term in a
finite sum be g(xo+id). let g be continuocus with a continu-

ous derivative g' « Then the first Euler-Maclaurin formula is:

k
k . 1 1,
i g(xo+1d) -X g(xo+xd)dx + §g(xo-kd) + Eg(xovkd)
- ~k
k
-d \ P, (x)g (x_+xd)dx
-k

If g has continuous derivatives of higher orders repeated

integration by parts gives the Euler-Maclaurin formulae:

k
k
Z g(x +id) = X g(x +id)dx + % g(x -kd) + % g(x_+kd)
-k

-k

By,

8 . .
-y 2 4ei-l {8(21'1)(xo-kd)-g(Zi-l)(xo*kd;‘
1 .

(2i) 4
k
. (-1)5+l£8+1j P25+l(x)g(28*1 ) (xo+xd)dx
k

where s is any non-negative integer, gj must exist for

j=1,2,...(25+41), and B, are the Bernoulli numbers, defined by:
J

- B, .
X = J -ixJ
o=l o j!
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The first Euler-Maclaurin formula given above can he applied

to an infinite sum to obtain:

\ t
“Z.J g(xo+id)' -& g(xo+xd)dx - d& Pl(x)g (xo+xd)dx
-t -l

provided that the series and the two integrals converge.
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APPENDIX III. ESTIHATION OF THE VARIANCE OF THE SPEARMAN ESTIMATOR

IIl.1 An estimator for V(x)

An obvious estimator for the variance of the Spearman
estimator is:

2 _ d e
Si — j Pya; (1r ‘i convergaa)

Then
B(s ° | x ) =V(1't‘x )
- [0} A (o)
x
The following result; can bhe obtained for this estimator
for the infinite experiment with random choice of X, follow-
ing the same methods used for obtaining the characteristics
of X,
If F has a first moment, 852; converges with probability

one and has the following mean and mean square error.

B(s%) = & jF(l—F)dx - (%)
X

2
we(s?) - (§)° | Bt ] F2(1F)ax
x n(n~-1)

i e

where Bz(s-% ‘ xo) denotes the bias of s% as an

+% EF(I-F)dx‘ + E Bz(a-zi‘xo):’

estimate of T(X) (5e4), conditional on X .
Unlike the case of X, where it can be shown that the

2
MSE(X) is a minimum for n=l1 when n'=n/d is fixed, for s=



9k

the optimum choice of n for n' fixed will depend on F. For
the normal tolerance distribution MSE(s %) decreases as n
increases but the decrease is negligible for n greater than
L. In this case, then, the optimum designs for estimation
of u and of ¥(x) do not agree, but a good compromise would
be to choose nsl, say.

I11.2 An Alternative Estimator for ¥(x) Based on the Second

Moment of F

Table 5.1 shows T(x) to be a function of the scale

parameter:
- do
Hx) = = CF (I11.1)
where C_ is a constant depending on the parametric formula-

F
tion of the tolerance distribution. The constants for the

normal, logistic, angular and uniform distributions are
.56L2, .5513, .5750 and .577L respectively.
If the constant C_, is considered over all distribution

F
functions, the function defined ty:

1 a2
P(x-: - a>» 0

+8

-

-

P(x = a) =

-

+a

is arbitrarily close to zero

will have Cp= ;‘L? , 80 that Cp
+&

for small a. There is a unique maximizing function for CF




9%

over any given finite interval (see Rustagg!‘/, and it can
be shown by a calculus of variations argument that the
uniform distribution is this function (CF-.57713).

An alternative estimator (s%z) for ¥(x) suggested ty

(ITI.1) is:

¥2 o d |3 o d) =2
% "n CF/ IOy /p )" (pyyyPy)

The estimate of o used in s-:—:2 is the Spearman type of esti-
mator suggested by Epstein and Churchman (1L) and shown bty
Cornfield and Mantel to be an algebraic approximation to the
maximum likelihood estimator of o for F logistic,

-]/See Rustagi, Jagdish Sharan, "On Minimizing and Maxi-
rizing a Certain Integral with Statistical Implications,"
Annals of Mathematical Statistics, 28 (1957) 309-328.
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